高晓春

点击量:   时间:2023-03-02 21:59

 

高晓春    博士讲师

材料工程专业研究生导师

电话:15589615117

邮件: Xiaochun.Gao@ldu.edu.cn                                  

教育经历:                                                                        

2016.9-2020.2    博士   悉尼科技大学     能源材料        清洁能源中心

2013.9-2016.7 硕士 山东大学         物理化学        化学与化工学院

2009.9-2013.7 学士 延边大学         应用化学           理学院

工作经历:

2021.1-至今     讲师       ok138太阳集团中国官方网站   ok138cn太阳集团529

2020.2-2020.11  研究助理   悉尼科技大学     清洁能源中心

目前研究领域                                                                      

催化产氢

、电催化CO2还原

电化学储能应用(锂硫电池,钠硫电池)

承担课题:

“二合一”载体界面工程实现室温钠硫电池全保护研究;山东省青年基金;主持;15万; 2023-2025

ok138太阳集团中国官方网站人才引进科研启动资金;主持;30万; 2021-2026

功能磁性量子材料创新团队;参与;180万;2019-2022

研究生培养:

主要招收物理、化学、材料等方向的研究生。

主讲课程:

《普通物理实验》、《光学》

研究成果:

设计具备优异界面催化性能的半导体材料,结合理论计算,探讨其在光催化水分解制氢、CO2还原、电化学储能反应的反应动力学过程,目前已发表高水平SCI论文25篇。以第一作者&通讯作者发表高水平SCI论文11篇,其中JCR一区9篇, IF1020的论文4(Nano Energy*1, IF=19.069; Small *1, IF=15.153; J. Mater. Chem. A *2, IF=14.511); IF>20的论文1 (Trends in chemistry, IF=22.448),包含National Science Open(中文名《国家科学进展》,系National Science Review 《国家科学评论》姊妹刊)*1

第一作者&通讯作者:

[1] Gao, X.; Feng, J.; Su, D.; Ma, Y.; Wang, G.; Ma, H.; Zhang, J. In-Situ Exfoliation of Porous Carbon Nitride Nanosheets for Enhanced Hydrogen Evolution. Nano Energy 2019, 59, 598–609. (1, 影响因子: 19.069)

[2] Chen, Y.; Gao, X. ; Su, D.; Wang, C.; Wang, G. Accelerating Redox Kinetics of Lithium-Sulfur Batteries. Trends in Chemistry. 2020, 2 (11), 1020-1033. (1区,影响因子:22.448,共一)

[3] Zhang, L.; Hou, S.; Wang, T.; Liu, S.; Gao, X.*; Wang, C. *; Wang, G. * Recent Advances in Application of Graphitic Carbon Nitride-Based Catalysts for Photocatalytic Nitrogen Fixation. Small 2022, 2202252, 1–29. (1, 影响因子: 15.153)

[4] Gao, X.; Yang, N.; Feng, J.; Liao, J.; Hou, S.; Ma, X.; Su, D.; Yu, X.; Yang, Z.; Safaei, J.; Wang, D.; Wang, G. Defect and Interface Control on Graphitic Carbon Nitrides/Upconversion Nanocrystals for Enhanced Solar Hydrogen Production. Natl. Sci. Open 20220037. (新刊,中文名《国家科学进展》,系Nat. Sci. Rev. 《国家科学评论》姊妹刊)

[5] Luo, X.; Lu, X.; Chen, X.; Chen, Y.; Song, C.; Yu, C.; Wang, N.; Su, D.; Wang, C.; Gao, X.*; Wang, G.*; Cui, L.* A Robust Flame Retardant Fluorinated Polyimide Nanofiber Separator for High-Temperature Lithium-Sulfur Batteries. J. Mater. Chem. A 2020, 8, 14788-14798. (1区,影响因子:14.511)

[6] Chu, Z. ; Gao, X. ; Wang, C.; Wang, T.; Wang, G. Metal–Organic Frameworks as Separators and Electrolytes for Lithium–Sulfur Batteries. J. Mater. Chem. A 2021, 9 (12), 7301–7316. (1区,影响因子:14.511)

[7] Zhou, X.; Wang, T.; Liu, H.; Gao, X.*; Wang, C.*; Wang, G*. Desulfurization through Photocatalytic Oxidation : A Critical Review. Chemsuschem 2021, 14 (2), 1–21. (1区,影响因子:9.140)

[8] Gao, X.; Zhou, D.; Chen, Y.; Wu, W.; Su, D.; Li, B.; Wang, G. Strong Charge Polarization Effect Enabled by Surface Oxidized Titanium Nitride for Lithium-Sulfur Batteries. Commun. Chem. 2019, 2 (1), 66. (1区,影响因子:7.211nature系列子刊

[9] Gao, X.; Li, S.; Li, T.; Li, G.; Ma, H. g-C3N4 as a Saturable Absorber for the Passively Q-Switched Nd:LLF Laser at 1.3 μm;M. Photonics Res. 2017, 5 (1), 33–36. (1, 影响因子: 7.254)

[10] Gao, X.; Wang, L.; Ma, J.; Wang, Y.; Zhang, J. Facile Preparation of Nitrogen-Doped Graphene as an Efficient Oxygen Reduction Electrocatalyst. Inorg. Chem. Front. 2017, 4 (9), 1582–1590. (1, 影响因子: 7.779)

[11] Gao, X.; Jiao, X.; Zhang, L.; Zhu, W.; Xu, X.; Ma, H.; Chen, T. Cosolvent-Free Nanocasting Synthesis of Ordered Mesoporous g-C3N4 and Its Remarkable Photocatalytic Activity for Methyl Orange Degradation. RSC Adv. 2015, 5 (94), 76963–76972. (2, 影响因子: 4.036)

共同作者:

[11] Tang, X.; Zhou, D.; Zhang, B.; Wang, S.; Li, P.; Liu, H.; Guo, X.; Jaumaux, P.; Gao, X.; Fu, Y. A Universal Strategy towards High Energy Aqueous Multivalent–Ion Batteries. Nat. Commun. 2021, 12 (1), 1–11.

[12] Zhang, F.; Guo, X.; Xiong, P.; Zhang, J.; Song, J.; Yan, K.; Gao, X.; Liu, H.; Wang, G. Interface Engineering of MXene Composite Separator for High‐Performance Li–Se and Na–Se Batteries. Adv. Energy Mater. 2020, 2000446.

[13] Yu, X.; Yu, Z.-Y.; Zhang, X.-L.; Li, P.; Sun, B.; Gao, X.; Yan, K.; Liu, H.; Duan, Y.; Gao, M.-R. Highly Disordered Cobalt Oxide Nanostructure Induced by Sulfur Incorporation for Efficient Overall Water Splitting. Nano Energy 2020, 104652.

[14] Wang, S.; Xiong, P.; Guo, X.; Zhang, J.; Gao, X.; Zhang, F.; Tang, X.; Notten, P. H. L.; Wang, G. A Stable Conversion and Alloying Anode for Potassium‐Ion Batteries: A Combined Strategy of Encapsulation and Confinement. Adv. Funct. Mater. 2020, 2001588.

[15] Zhou, D.; Tang, X.; Guo, X.; Li, P.; Shanmukaraj, D.; Liu, H.; Gao, X.; Wang, Y.; Rojo, T.; Armand, M.; Wang, G.  Polyolefin–Based Janus Separator for Rechargeable Sodium Batteries. Angew. Chemie Int. Ed. 2020, 59, 16725.

[16] Yang, W.; Yang, W.; Dong, L.; Gao, X.; Wang, G.; Shao, G. Enabling Immobilization and Conversion of Polysulfides through a Nitrogen-Doped Carbon Nanotubes/Ultrathin MoS2 Nanosheet Core-Shell Architecture for Lithium-Sulfur Batteries. J. Mater. Chem. A 2019, 7 (21), 13103–13112.

[17] Chen, Y.; Choi, S.; Su, D.; Gao, X.; Wang, G. Self-Standing Sulfur Cathodes Enabled by 3D Hierarchically Porous Titanium Monoxide-Graphene Composite Film for High-Performance Lithium-Sulfur Batteries. Nano Energy 2018, 47, 331–339.

[18] Zhang, L.; Jia, C.; He, S.; Zhu, Y.; Wang, Y.; Zhao, Z.; Gao, X.; Zhang, X.; Sang, Y.; Zhang, D.; Xu, X.; Liu, H. Hot Hole Enhanced Synergistic Catalytic Oxidation on Pt-Cu Alloy Clusters. Adv. Sci. 2017, 4 (6), 1600448.

[19] Liu, L.; Qi, W.; Gao, X.; Wang, C.; Wang, G. Synergistic Effect of Metal Ion Additives on Graphitic Carbon Nitride Nanosheet-Templated Electrodeposition of Cu@CuO for Enzyme-Free Glucose Detection. J. Alloys Compd. 2018, 745, 155–163.

[20] Huang, H.; Zhu, W.; Gao, X.; Liu, X.; Ma, H. Synthesis of a Novel Electrode Material Containing Phytic Acid-Polyaniline Nanofibers for Simultaneous Determination of Cadmium and Lead Ions. Anal. Chim. Acta 2016, 947, 32–41.

[21] Fan, M.; Li, T.; Zhao, S.; Li, G.; Gao, X.; Yang, K.; Li, D.; Kränkel, C. Multilayer Black Phosphorus as Saturable Absorber for an Er:Lu2O3 Laser at ~3 μm;M. Photonics Res. 2016, 4 (5), 181–186.

[22] Zhu, W.; Huang, H.; Gao, X.; Ma, H. Electrochemical Behavior and Voltammetric Determination of Acetaminophen Based on Glassy Carbon Electrodes Modified with Poly(4-Aminobenzoic Acid)/Electrochemically Reduced Graphene Oxide Composite Films. Mater. Sci. Eng. C 2014, 45, 21–28.